Service Action Recognition in Power Supply Business Hall with 3D-Fused ConvNet

نویسندگان

چکیده

For the purpose of improving service quality, video surveillance systems are widely used to standardize process in power supply business halls. If employers check ensure predefined staff behaviours, it will be characterized as time-consuming. In recent years, great progress has been made intelligent action recognition using Convolution Neural Networks (CNNs). However, due small range staffs' motion and similar scene information halls, performance traditional CNNs recognize actions, e.g. bowing, standing sitting, is general. rate, this paper proposes a 3D-fused Convolutional Network (ConvNet) for actions recognition, which focuses on detecting typical one person customer with well-segmented clip. The clips sent input ConvNet recognition. consists two base learners, optical flow learner RGB learner. Both learners use 3D (C3D) architecture. Specifically, can capture features while viewed key part eliminate influence background, especially scene. Furthermore, prediction scores weighted by softmax function according each Finally, fused obtain result, namely specific staffs videos. experiment result shows that proposed method achieves 92.41% accuracy dataset hall.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Gating ConvNet for Two-Stream based Methods in Action Recognition

For the two-stream style methods in action recognition, fusing the two streams’ predictions is always by the weighted averaging scheme. This fusion method with fixed weights lacks of pertinence to different action videos and always needs trial and error on the validation set. In order to enhance the adaptability of two-stream ConvNets and improve its performance, an end-to-end trainable gated f...

متن کامل

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

3D Action Recognition in an Industrial Environment

In this study we introduce a method for 3D trajectory based recognition of and discrimination between different working actions. The 3D pose of the human hand-forearm limb is tracked over time with a two-hypothesis tracking framework based on the Shape Flow algorithm. A sequence of working actions is recognised with a particle filter based non-stationary Hidden Markov Model framework, relying o...

متن کامل

Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

Torso joints can be considered as the landmarks of human body. An action consists of a series of body poses which are determined by the positions of the joints. With the rapid development of RGB-D camera technique and pose estimation research, the acquisition of the body joints has become much easier than before. Thus, we propose to incorporate joint positions with currently popular deep-learne...

متن کامل

Robust 3D Action Recognition with Random Occupancy Patterns

We study the problem of action recognition from depth sequences captured by depth cameras, where noise and occlusion are common problems because they are captured with a single commodity camera. In order to deal with these issues, we extract semi-local features called random occupancy pattern (ROP) features, which employ a novel sampling scheme that effectively explores an extremely large sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Electrical and Electronic Engineering

سال: 2021

ISSN: ['1804-3119', '1336-1376']

DOI: https://doi.org/10.15598/aeee.v19i1.3950